Great enhancements in the thermoelectric power factor of BiSbTe nanostructured films with well-ordered interfaces.

نویسندگان

  • Hsiu-Cheng Chang
  • Chun-Hua Chen
  • Yung-Kang Kuo
چکیده

An innovative concept of twin-enhanced thermoelectricity was proposed to fundamentally resolve the high electrical resistance while not degrading the phonon scattering of the thermoelectric nanoassemblies. Under this frame, a variety of highly oriented and twinned bismuth antimony telluride (BixSb2-xTe3) nanocrystals were successfully fabricated by a large-area pulsed-laser deposition (PLD) technique on insulated silicon substrates at various deposition temperatures. The significant presence of the nonbasal- and basal-plane twins across the hexagonal BiSbTe nanocrystals, which were experimentally and systematically observed for the first time, evidently contributes to the unusually high electrical conductivity of ~2700 S cm(-1) and the power factor of ~25 μW cm(-1) K(-2) as well as the relatively low thermal conductivity of ~1.1 W m(-1) K(-1) found in these nanostructured films.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of nanostructured bismuth selenide thin films.

Nanostructured bismuth selenide thin films have been successfully fabricated on a silicon substrate at low temperature by rational design of the precursor solution. Bi(2)Se(3) thin films were constructed of coalesced lamella in the thickness of 50-80 nm. The nucleation and growth process of Bi(2)Se(3) thin films, as well as the influence of solution chemistry on the film structure were investig...

متن کامل

Thermoelectric Transport Phenomena in Semiconducting Nanostructures

Title of Document: THERMOELECTRIC TRANSPORT PHENOMENA IN SEMICONDUCTING NANOSTRUCTURES Jane Elizabeth Cornett, Doctor of Philosophy, 2013 Directed By: Associate Professor Oded Rabin, Department of Materials Science and Engineering The efficiencies of state-of-the-art thermoelectric devices made from bulk materials remain too low for widespread application. Early predictions by Hicks and Dressel...

متن کامل

Nanostructured Interfaces for Thermoelectrics

Temperature drops at the interfaces between thermoelectric materials and the heat source and sink reduce the overall efficiency of thermoelectric systems. Nanostructured interfaces based on vertically aligned carbon nanotubes (CNTs) promise the combination of mechanical compliance and high thermal conductance required for thermoelectric modules, which are subjected to severe thermomechanical st...

متن کامل

High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys.

The dimensionless thermoelectric figure of merit (ZT) in bismuth antimony telluride (BiSbTe) bulk alloys has remained around 1 for more than 50 years. We show that a peak ZT of 1.4 at 100 degrees C can be achieved in a p-type nanocrystalline BiSbTe bulk alloy. These nanocrystalline bulk materials were made by hot pressing nanopowders that were ball-milled from crystalline ingots under inert con...

متن کامل

Nanostructural Tailoring to Induce Flexibility in Thermoelectric Ca3Co4O9 Thin Films

Because of their inherent rigidity and brittleness, inorganic materials have seen limited use in flexible thermoelectric applications. On the other hand, for high output power density and stability, the use of inorganic materials is required. Here, we demonstrate a concept of fully inorganic flexible thermoelectric thin films with Ca3Co4O9-on-mica. Ca3Co4O9 is promising not only because of its ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 5 15  شماره 

صفحات  -

تاریخ انتشار 2013